Part Number Hot Search : 
2SK1078 0M25V1 BU2614FS IRSF3031 11EQS03L PSE20011 03000 58004
Product Description
Full Text Search
 

To Download AD9460BSVZ-80 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 16-Bit, 80 MSPS/105 MSPS ADC AD9460
FEATURES
105 MSPS guaranteed sampling rate (AD9460-105) 79.4 dBFS SNR/91 dBc SFDR with 10 MHz input (3.4 V p-p input, 80 MSPS) 78.3 dBFS SNR/ with 170 MHz input (4.0 V p-p input, 80 MSPS) 77.8 dBFS SNR/87 dBc SFDR with 170 MHz input (3.4 V p-p input, 80 MSPS) 77.2 dBFS SNR/84 dBc SFDR with 170 MHz input (3.4 V p-p input, 105 MSPS) 90 dBFS two-tone SFDR with 139 MHz/140 MHz input (3.4 V p-p input, 105 MSPS) 60 fsec rms jitter Excellent linearity DNL = 0.5 LSB typical INL = 3.0 LSB typical 2.0 V p-p to 4.0 V p-p differential full-scale input Buffered analog inputs LVDS outputs (ANSI-644 compatible) or CMOS outputs Data format select (offset binary or twos complement) Output data capture clock available 3.3 V and 5 V supply operation
FUNCTIONAL BLOCK DIAGRAM
AGND AVDD1 AVDD2 DRGND DRVDD DFS DCS MODE BUFFER VIN+ VIN- T/H PIPELINE ADC 16 CMOS OR LVDS OUTPUT STAGING 2 32 OUTPUT MODE OR D15 TO D0
AD9460
CLK+ CLK-
CLOCK AND TIMING MANAGEMENT
2 DCO REF
VREF SENSE REFT REFB
Figure 1.
APPLICATIONS
MRI receivers Multicarrier, multimode, cellular receivers Antenna array positioning Power amplifier linearization Broadband wireless Radar Infrared imaging Communications instrumentation
Optional features allow users to implement various selectable operating conditions, including input range, data format select, and output data mode. The AD9460 is available in a Pb-free, 100-lead, surface-mount, plastic package (TQFP_EP) specified over the industrial temperature range of -40C to +85C.
PRODUCT HIGHLIGHTS
1. 2. True 16-bit linearity. High performance: outstanding SNR performance for baseband IFs in data acquisition, instrumentation, magnetic resonance imaging, and radar receivers. Ease of use: on-chip reference and high input impedance, track-and-hold with adjustable analog input range, and an output clock simplifies data capture. Packaged in a Pb-free, 100-lead TQFP/EP. Clock duty cycle stabilizer (DCS) maintains overall ADC performance over a wide range of clock pulse widths. Out-of-range (OR) outputs indicate when the signal is beyond the selected input range.
GENERAL DESCRIPTION
The AD9460 is a 16-bit, monolithic, sampling, analog-to-digital converter (ADC) with an on-chip track-and-hold circuit. It is optimized for performance, small size, and ease of use. The AD9460 operates up to 105 MSPS, providing a superior signalto-noise ratio (SNR) for instrumentation, medical imaging, and radar receivers using baseband (<100 MHz) and IF frequencies. The ADC requires 3.3 V and 5.0 V power supplies and a low voltage differential input clock for full performance operation. No external reference or driver components are required for many applications. Data outputs are CMOS or LVDS compatible (ANSI-644 compatible) and include the means to reduce the overall current needed for short trace distances.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
3.
4. 5. 6.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 (c)2006 Analog Devices, Inc. All rights reserved.
06006-001
AD9460 TABLE OF CONTENTS
Features .............................................................................................. 1 Functional Block Diagram .............................................................. 1 Applications....................................................................................... 1 General Description ......................................................................... 1 Product Highlights ........................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 DC Specifications ......................................................................... 3 AC Specifications.......................................................................... 4 Digital Specifications ................................................................... 5 Switching Specifications .............................................................. 5 Timing Diagrams.......................................................................... 6 Absolute Maximum Ratings............................................................ 7 Thermal Resistance ...................................................................... 7 ESD Caution.................................................................................. 7 Pin Configurations and Function Descriptions ............................8 Equivalent Circuits......................................................................... 12 Typical Performance Characteristics ........................................... 13 Terminology .................................................................................... 19 Theory of Operation ...................................................................... 20 Analog Input and Reference Overview ................................... 20 Clock Input Considerations...................................................... 21 Power Considerations................................................................ 22 Digital Outputs ........................................................................... 23 Timing ......................................................................................... 23 Operational Mode Selection ..................................................... 23 Evaluation Board ............................................................................ 24 Outline Dimensions ....................................................................... 31 Ordering Guide .......................................................................... 31
REVISION HISTORY
7/06--Revision 0: Initial Version
Rev. 0 | Page 2 of 32
AD9460 SPECIFICATIONS
DC SPECIFICATIONS
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, specified minimum sampling rate, 3.4 V p-p differential input, internal trimmed reference (1.0 V mode), analog input amplitude = -1.0 dBFS, DCS = AGND (on), SFDR = AGND, unless otherwise noted. Table 1.
Parameter RESOLUTION ACCURACY No Missing Codes Offset Error Gain Error Differential Nonlinearity (DNL) 1 Integral Nonlinearity (INL)1 VOLTAGE REFERENCE Output Voltage VREF = 1.7 V Load Regulation @ 1.0 mA Reference Input Current (External VREF = 1.7 V) INPUT REFERRED NOISE ANALOG INPUT Input Span VREF = 1.7 V VREF = 1.0 V Internal Input Common-Mode Voltage External Input Common-Mode Voltage Input Resistance 2 Input Capacitance2 POWER SUPPLIES Supply Voltages AVDD1 AVDD2 DRVDD--LVDS Outputs DRVDD--CMOS Outputs Supply Currents1 AVDD1 AVDD21, 3 IDRVDD1--LVDS Outputs IDRVDD1--CMOS Outputs PSRR Offset Gain POWER CONSUMPTION3 LVDS Outputs CMOS Outputs (DC Input)
1 2
Temp Full Full Full 25C Full 25C Full 25C Full Full Full 25C
Min
AD9460BSVZ-80 Typ Max 16 Guaranteed 0.1 +5.0 0.5 +3 +3.4 0.5 +0.8 +0.9 3 +6 1.7 2 350 2.4
AD9460BSVZ-105 Min Typ Max 16 Guaranteed 0.1 +5.0 0.5 +3 +3.4 0.5 +0.85 +1.2 3 +6 1.7 2 350 2.5
Unit Bits
-5.0 -3 -3.4 -0.8 -0.9 -6
-5.0 -3 -3.4 -0.85 -1 -6
mV % FSR % FSR LSB LSB V mV A LSB rms
Full Full Full Full Full Full
3.4 2.0 3.5 3.2 1 6 3.9 3.2
3.4 2.0 3.5 3.9 1 6
V p-p V p-p V V k pF
Full Full Full Full Full Full Full Full Full Full Full Full
3.14 4.75 3.0 3.0
3.3 5.0 3.3 3.3 290 101 70 14 1 0.2 1.7 1.5
3.46 5.25 3.6 3.6 310 110 78.5
3.14 4.75 3.0 3.0
3.3 5.0 3.3 3.3 337 116 71 14 1 0.2
3.46 5.25 3.6 3.6 373 133 81
V V V V mA mA mA mA mV/V %/V
1.8
1.9 1.7
2.2
W W
Measured at the maximum clock rate, fIN = 15 MHz, full-scale sine wave, with a 100 differential termination on each pair of output bits for LVDS output mode and approximately 5 pF loading on each output bit for CMOS output mode. Input capacitance or resistance refers to the effective impedance between one differential input pin and AGND. Refer to Figure 6 for the equivalent analog input structure. 3 For SFDR = AVDD1, IAVDD2 power increases by ~70 mW for the AD9460BSVZ-80 and ~20 mW for the AD9460BSVZ-105.
Rev. 0 | Page 3 of 32
AD9460
AC SPECIFICATIONS
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, specified minimum sample rate, 3.4 V p-p differential input, internal trimmed reference (1.7 V mode), AIN = -1.0 dBFS, DCS = AGND (on), SFDR = AGND, unless otherwise noted. Table 2.
Parameter SIGNAL-TO-NOISE RATIO (SNR) fIN = 10 MHz fIN = 170 MHz fIN = 225 MHz SIGNAL-TO-NOISE AND DISTORTION (SINAD) fIN = 10 MHz fIN = 170 MHz fIN = 225 MHz EFFECTIVE NUMBER OF BITS (ENOB) fIN = 10 MHz fIN = 170 MHz fIN = 225 MHz SPURIOUS-FREE DYNAMIC RANGE (SFDR, SECOND OR THIRD HARMONIC) fIN = 10 MHz fIN = 170 MHz fIN = 225 MHz WORST SPUR EXCLUDING SECOND OR THIRD HARMONICS fIN = 10 MHz fIN = 170 MHz fIN = 225 MHz TWO-TONE SFDR fIN = 139.6 MHz @ -7 dBFS, 140.6 MHz @ -7 dBFS ANALOG BANDWIDTH Temp 25C Full 25C Full 25C 25C Full 25C Full 25C 25C 25C 25C Min 77.6 77.4 76.1 75.0 AD9460BSVZ-80 Typ Max 78.4 76.8 75.7 76.1 74.4 74.0 72.1 78.0 76.1 74.6 12.8 12.5 12.3 75.2 74.5 72.0 71.2 Min 77.2 76.9 75.0 74.5 AD9460BSVZ-105 Typ Max 78.1 76.2 75.2 77.4 75.1 73.6 12.7 12.4 12.1 Unit dB dB dB dB dB dB bits bits bits
25C Full 25C Full 25C
80 78 80 78
91 87 82
80 76 78 74
88 84 81
dBc dBc dBc
25C Full 25C Full 25C 25C Full
94 91 90 88
100 98 97 89 615
92 91 89 85
98 98 92 90 615
dBc dBc dBc dBFS MHz
Rev. 0 | Page 4 of 32
AD9460
DIGITAL SPECIFICATIONS
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, RLVDS_BIAS = 3.74 k, unless otherwise noted. Table 3.
Parameter CMOS LOGIC INPUTS (DFS, DCS MODE, OUTPUT MODE) High Level Input Voltage Low Level Input Voltage High Level Input Current Low Level Input Current Input Capacitance DIGITAL OUTPUT BITS--CMOS MODE (D0 to D15, OTR) 1 DRVDD = 3.3 V High Level Output Voltage Low Level Output Voltage DIGITAL OUTPUT BITS--LVDS MODE (D0 to D15, OTR) VOD Differential Output Voltage 2 VOS Output Offset Voltage CLOCK INPUTS (CLK+, CLK-) Differential Input Voltage Common-Mode Voltage Input Resistance Input Capacitance
1 2
Temp Full Full Full Full Full
Min 2.0
AD9460BSVZ-80/105 Typ Max
Unit V V A A pF
-10 2
0.8 200 +10
Full Full Full Full Full Full Full Full
3.25 0.2 247 1.125 0.2 1.3 1.1 545 1.375
V V mV V V V k pF
1.5 1.4 2
1.6 1.7
Output voltage levels measured with 5 pF load on each output. LVDS RTERM = 100 .
SWITCHING SPECIFICATIONS
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, unless otherwise noted. Table 4.
Parameter CLOCK INPUT PARAMETERS Maximum Conversion Rate Minimum Conversion Rate CLK Period CLK Pulse Width High 1 (tCLKH) CLK Pulse Width Low1 (tCLKL) DATA OUTPUT PARAMETERS Output Propagation Delay--CMOS (tPD) 2 (Dx, DCO+) Output Propagation Delay--LVDS (tPD) 3 (Dx+), (tCPD)3 (DCO+) Pipeline Delay (Latency) Aperture Delay (tA) Aperture Uncertainty (Jitter, tJ)
1 2
Temp Full Full Full Full Full Full Full Full Full Full
AD9460BSVZ-80 Min Typ Max 80 1 12.5 5.0 5.0 3.35 3.6 13 60
AD9460BSVZ-105 Min Typ Max 105 1 9.5 3.8 3.8 3.35 3.6 13 60
Unit MSPS MSPS ns ns ns ns ns cycles ns fs, rms
2.3
4.8
2.3
4.8
With duty cycle stabilizer (DCS) enabled. Output propagation delay is measured from clock 50% transition to data 50% transition with 5 pF load. 3 LVDS RTERM = 100 . Measured from the 50% point of the rising edge of CLK+ to the 50% point of the data transition.
Rev. 0 | Page 5 of 32
AD9460
TIMING DIAGRAMS
N-1 VIN N N+1 N + 13 N + 15 N + 14
tCLKL tCLKH
CLK+ CLK- 1/fS
tPD
Dx N - 13 N - 12 13 CLOCK CYCLES DCO+ DCO- N N+1
tCPD
Figure 2. LVDS Mode Timing Diagram
N-1 VIN N N+1
tCLKL tCLKH
N+2
CLK- CLK+
tPD
13 CLOCK CYCLES
Dx
N - 13
N - 12
N-1
N
DCO+ DCO-
06006-003
Figure 3. CMOS Timing Diagram
Rev. 0 | Page 6 of 32
06006-002
AD9460 ABSOLUTE MAXIMUM RATINGS
Table 5.
Parameter ELECTRICAL AVDD1 to AGND AVDD2 to AGND DRVDD to DGND AGND to DGND AVDD1 to DRVDD AVDD2 to DRVDD AVDD2 to AVDD1 D0 Through D15 to DGND CLK+/CLK- to AGND OUTPUT MODE, DCS MODE, and DFS to AGND VIN+, VIN- to AGND VREF to AGND SENSE to AGND REFT, REFB to AGND ENVIRONMENTAL Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering 10 sec) Junction Temperature Rating -0.3 V to +4 V -0.3 V to +6 V -0.3 V to +4 V -0.3 V to +0.3 V -4 V to +4 V -4 V to +6 V -4 V to +6 V -0.3 V to DRVDD + 0.3 V -0.3 V to AVDD1 + 0.3 V -0.3 V to AVDD1 + 0.3 V -0.3 V to AVDD2 + 0.3 V -0.3 V to AVDD1 + 0.3 V -0.3 V to AVDD1 + 0.3 V -0.3 V to AVDD1 + 0.3 V -65C to +125C -40C to +85C 300C 150C
THERMAL RESISTANCE
The heat sink of the AD9460 package must be soldered to ground. Airflow increases heat dissipation, effectively reducing JA. Also, more metal directly in contact with the package leads from metal traces through holes, ground, and power planes reduces the JA. It is required that the exposed heat sink be soldered to the ground plane. Table 6.
Package Type 100-Lead TQFP_EP
1 2 3
JA 1 19.8
JB 2 8.3
JC 3 2
Unit C/W
Typical JA = 19.8C/W (heat sink soldered) for a multilayer board in still air. Typical JB = 8.3C/W (heat sink soldered) for a multilayer board in still air. Typical JC = 2C/W (junction to exposed heat sink) represents the thermal resistance through heat sink path
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. 0 | Page 7 of 32
AD9460 PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
D15+ (MSB) DRGND DRVDD
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76
DCS MODE DNC DFS LVDS_BIAS AVDD1 SENSE VREF AGND
DRVDD
AVDD1
AVDD1
AVDD1
AVDD1
AVDD1
AVDD1
AGND
AGND
AGND
SFDR
D14+
D13+
D12+
D11+
D15-
D14-
D13-
D12-
D11-
OR+
OR-
1 2 PIN 1
75 74 73 72 71 70 69
DRGND D10+ D10- D9+ D9- D8+ D8- DCO+ DCO- D7+ D7- DRVDD DRGND D6+ D6- D5+ D5- D4+ D4- D3+ D3- D2+ D2- D1+ D1-
OUTPUT MODE 3
4 5 6 7 8 9
REFT 10 REFB 11 AVDD2 12 AVDD2 13 AVDD2 14 AVDD2 15 AVDD2 16 AVDD2 17 AVDD1 18 AVDD1 19 AVDD1 20 AGND 21 VIN+ 22 VIN- 23 AGND 24 AVDD2 25
AD9460 LVDS MODE
TOP VIEW (Not to Scale)
68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
AGND
CLK+
AGND
AGND
CLK-
D0- (LSB)
DRGND
AVDD2
AVDD2
AVDD2
AVDD2
AVDD2
AVDD2
AVDD1
AVDD1
AVDD1
AVDD2
AVDD1
AVDD2
AVDD1
AVDD1
AVDD1
AVDD1
DRVDD
D0+
DNC = DO NOT CONNECT
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Figure 4. 100-Lead TQFP_EP Pin Configuration in LVDS Mode
Table 7. Pin Function Descriptions--100-Lead TQFP_EP in LVDS Mode
Pin No. 1 Mnemonic DCS MODE Description Clock Duty Cycle Stabilizer (DCS) Control Pin. CMOS compatible. DCS = low (AGND) to enable DCS (recommended). DCS = high (AVDD1) to disable DCS. Do Not Connect. This pin should float. CMOS-Compatible Output Logic Mode Control Pin. OUTPUT MODE = 0 for CMOS mode. OUTPUT MODE = 1 (AVDD1) for LVDS outputs. Data Format Select Pin. CMOS control pin that determines the format of the output data. DFS = high (AVDD1) for twos complement DFS = low (ground) for offset binary format. Set Pin for LVDS Output Current. Place a 3.7 k resistor terminated to DRGND. 3.3 V (5%) Analog Supply. Reference Mode Selection. Connect to AGND for internal 1.7 V reference (3.4 V p-p analog input range); connect to AVDD1 for external reference. 1.7 V Reference I/O. The function is dependent on the SENSE pin and external programming resistors. Decouple to ground with 0.1 F and 10 F capacitors. Analog Ground. The exposed heat sink on the bottom of the package must be connected to AGND.
2 3
DNC OUTPUT MODE
4
DFS
5 6, 18 to 20, 32 to 34, 36, 38, 43 to 45, 92 to 97 7 8 9, 21, 24, 39, 42, 46, 91, 98, 99, Exposed Heat Sink
LVDS_BIAS AVDD1 SENSE VREF AGND
Rev. 0 | Page 8 of 32
06006-004
AD9460
Pin No. 10 11 12 to 17, 25 to 31, 35, 37 22 23 40 41 47, 63, 75, 87 48, 64, 76, 88 49 50 51 52 53 54 55 56 57 58 59 60 61 62 65 66 67 68 69 70 71 72 73 74 77 78 79 80 81 82 83 84 85 86 89 90 100 Mnemonic REFT REFB AVDD2 VIN+ VIN- CLK+ CLK- DRGND DRVDD D0- (LSB) D0+ D1- D1+ D2- D2+ D3- D3+ D4- D4+ D5- D5+ D6- D6+ D7- D7+ DCO- DCO+ D8- D8+ D9- D9+ D10- D10+ D11- D11+ D12- D12+ D13- D13+ D14- D14+ D15- D15+ (MSB) OR- OR+ SFDR Description Differential Reference Output. Decoupled to ground with 0.1 F capacitor and to REFB (Pin 11) with 0.1 F and 10 F capacitors. Differential Reference Output. Decoupled to ground with a 0.1 F capacitor and to REFT (Pin 10) with 0.1 F and 10 F capacitors. 5.0 V Analog Supply (5%). Analog Input--True. Analog Input--Complement. Clock Input--True. Clock Input--Complement. Digital Output Ground. 3.3 V Digital Output Supply (3.0 V to 3.6 V). D0 Complement Output Bit (LVDS Levels). D0 True Output Bit. D1 Complement Output Bit. D1 True Output Bit. D2 Complement Output Bit. D2 True Output Bit. D3 Complement Output Bit. D3 True Output Bit. D4 Complement Output Bit. D4 True Output Bit. D5 Complement Output Bit. D5 True Output Bit. D6 Complement Output Bit. D6 True Output Bit. D7 Complement Output Bit. D7 True Output Bit. Data Clock Output--Complement. Data Clock Output--True. D8 Complement Output Bit. D8 True Output Bit. D9 Complement Output Bit. D9 True Output Bit. D10 Complement Output Bit. D10 True Output Bit. D11 Complement Output Bit. D11 True Output Bit. D12 Complement Output Bit. D12 True Output Bit. D13 Complement Output Bit. D13 True Output Bit. D14 Complement Output Bit. D14 True Output Bit. D15 Complement Output Bit. D15 True Output Bit. Out-of-Range Complement Output Bit. Out-of-Range True Output Bit. SFDR Control Pin. CMOS-compatible control pin for optimizing the configuration of the AD9460 analog front end. Connecting SFDR to AGND optimizes SFDR performance for applications with analog input frequencies <200 MHz for 80 MSPS and 105 MSPS speed grades. For applications with analog inputs >200 MHz, connect this pin to AVDD1 for optimum SFDR performance; power dissipation from AVDD2 increases by ~70 mW for the AD9460BSVZ-80 and ~20 mW for the AD9460BSVZ-105.
Rev. 0 | Page 9 of 32
AD9460
D15+ (MSB) DRGND DRVDD DRVDD AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AGND AGND AGND SFDR D14+ D13+ D12+ D11+ D10+ OR+ D9+ D8+ D7+ D6+ D5+
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76
DCS MODE DNC DFS LVDS_BIAS AVDD1 SENSE VREF AGND
1 2 PIN 1
75 74 73 72 71 70 69
DRGND D4+ D3+ D2+ D1+ D0+ (LSB) DNC DCO+ DCO- DNC DNC DRVDD DRGND DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC DNC
OUTPUT MODE 3
4 5 6 7 8 9
REFT 10 REFB 11 AVDD2 12 AVDD2 13 AVDD2 14 AVDD2 15 AVDD2 16 AVDD2 17 AVDD1 18 AVDD1 19 AVDD1 20 AGND 21 VIN+ 22 VIN- 23 AGND 24 AVDD2 25
AD9460 CMOS MODE
TOP VIEW (Not to Scale)
68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
AGND
CLK+
CLK-
AGND
AGND
DNC
DRGND
AVDD2
AVDD2
AVDD2
AVDD2
AVDD2
AVDD2
AVDD1
AVDD1
AVDD1
AVDD2
AVDD1
AVDD2
AVDD1
AVDD1
AVDD1
AVDD1
DRVDD
DNC
DNC = DO NOT CONNECT
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
06006-005
Figure 5. 100-Lead TQFP_EP Pin Configuration in CMOS Mode
Table 8. Pin Function Descriptions--100-Lead TQFP_EP in CMOS Mode
Pin No. 1 Mnemonic DCS MODE Description Clock Duty Cycle Stabilizer (DCS) Control Pin. CMOS compatible. DCS = low (AGND) to enable DCS (recommended). DCS = high (AVDD1) to disable DCS. Do Not Connect. These pins should float. CMOS-Compatible Output Logic Mode Control Pin. OUTPUT MODE = 0 for CMOS mode. OUTPUT MODE = 1 (AVDD1) for LVDS outputs. Data Format Select Pin. CMOS control pin that determines the format of the output data. DFS = high (AVDD1) for twos complement. DFS = low (ground) for offset binary format. Set Pin for LVDS Output Current. Place a 3.7 k resistor terminated to DRGND. 3.3 V (5%) Analog Supply. Reference Mode Selection. Connect to AGND for internal 1.7 V reference (3.4 V p-p analog input range); connect to AVDD1 for external reference. 1.7 V Reference I/O. The function is dependent on the SENSE pin and external programming resistors. Decouple to ground with 0.1 F and 10 F capacitors. Analog Ground. The exposed heat sink on the bottom of the package must be connected to AGND. Differential Reference Output. Decoupled to ground with 0.1 F capacitor and to REFB (Pin 11) with 0.1 F and 10 F capacitors.
2, 49 to 62, 65 to 66, 69 3
DNC OUTPUT MODE
4
DFS
5 6, 18 to 20, 32 to 34, 36, 38, 43 to 45, 92 to 97 7 8 9, 21, 24, 39, 42, 46, 91, 98, 99, Exposed Heat Sink 10
LVDS_BIAS AVDD1 SENSE VREF AGND REFT
Rev. 0 | Page 10 of 32
AD9460
Pin No. 11 12 to 17, 25 to 31, 35, 37 22 23 40 41 47, 63, 75, 87 48, 64, 76, 88 67 68 70 71 72 73 74 77 78 79 80 81 82 83 84 85 86 89 90 100 Mnemonic REFB AVDD2 VIN+ VIN- CLK+ CLK- DRGND DRVDD DCO- DCO+ D0+ (LSB) D1+ D2+ D3+ D4+ D5+ D6+ D7+ D8+ D9+ D10+ D11+ D12+ D13+ D14+ D15+ (MSB) OR+ SFDR Description Differential Reference Output. Decoupled to ground with a 0.1 F capacitor and to REFT (Pin 10) with 0.1 F and 10 F capacitors. 5.0 V Analog Supply (5%). Analog Input--True. Analog Input--Complement. Clock Input--True. Clock Input--Complement. Digital Output Ground. 3.3 V Digital Output Supply (3.0 V to 3.6 V). Data Clock Output--Complement. Data Clock Output--True. D0 True Output Bit (CMOS Levels). D1 True Output Bit. D2 True Output Bit. D3 True Output Bit. D4 True Output Bit. D5 True Output Bit. D6 True Output Bit. D7 True Output Bit. D8 True Output Bit. D9 True Output Bit. D10 True Output Bit. D11 True Output Bit. D12 True Output Bit. D13 True Output Bit. D14 True Output Bit. D15 True Output Bit. Out-of-Range True Output Bit. SFDR Control Pin. CMOS-compatible control pin for optimizing the configuration of the AD9460 analog front end. Connecting SFDR to AGND optimizes SFDR performance for applications with analog input frequencies <200 MHz for 80 MSPS and 105 MSPS speed grades. For applications with analog inputs >200 MHz, connect this pin to AVDD1 for optimum SFDR performance; power dissipation from AVDD2 increases by ~70 mW for the AD9460BSVZ-80 and ~20 mW for the AD9460BSVZ-105.
Rev. 0 | Page 11 of 32
AD9460 EQUIVALENT CIRCUITS
AVDD2 VIN+ 6pF 1k
Dx DRVDD
3.5V
X1 1k
T/H
06006-009
06006-006
AVDD2
VIN- 6pF
Figure 6. Equivalent Analog Input Circuit
Figure 9. Equivalent CMOS Digital Output Circuit
DRVDD
DRVDD
VDD
1.2V LVDS_BIAS 3.74k
K
ILVDSOUT
06006-007
DCS MODE, OUTPUT MODE, DFS 30k
06006-010
Figure 7. Equivalent LVDS_BIAS Circuit
Figure 10. Equivalent Digital Input Circuit, DFS, DCS MODE, OUTPUT MODE
DRVDD
AVDD1
3k
3k CLK-
V Dx- V
V
CLK+
Dx+ V
2.5k
06006-008
2.5k
Figure 8. Equivalent LVDS Digital Output Circuit
Figure 11. Equivalent Sample Clock Input Circuit
Rev. 0 | Page 12 of 32
06006-011
AD9460 TYPICAL PERFORMANCE CHARACTERISTICS
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, rated sample rate, LVDS mode, DCS enabled, TA = 25C, 3.4 V p-p differential input, AIN = -1 dBFS, internal trimmed reference (nominal VREF = 1.7 V), unless otherwise noted.
0 -10 -20 -30 105MSPS 10.3MHz @ -1.0dBFS SNR = 78.1dB ENOB = 12.9 BITS SFDR = 88dBc 0 -10 -20 -30 105MSPS 225.3MHz @ -1.0dBFS SNR = 75.2dB ENOB = 12.6 BITS SFDR = 81dBc
AMPLITUDE (dBFS)
-50 -60 -70 -80 -90 -100 -110 -120
06006-012
AMPLITUDE (dBFS)
-40
-40 -50 -60 -70 -80 -90 -100 -110 -120
0
13.125
26.250 FREQUENCY (MHz)
39.375
52.500
0
13.125
26.250 FREQUENCY (MHz)
39.375
52.500
Figure 12. 105 MSPS, 64k Point, Single-Tone FFT, 10.3 MHz
0 -10 -20 -30
Figure 15. 105 MSPS, 64k Point, Single-Tone FFT, 225.3 MHz
0.6
105MSPS 170.3MHz @ -1.0dBFS SNR = 76.2dB ENOB = 12.6 BITS SFDR = 84dBc
0.4
AMPLITUDE (dBFS)
-40
0.2
-60 -70 -80 -90 -100 -110 -120
06006-050
DNL (MSB)
-50
0
-0.2
-0.4
0
13.125
26.250 FREQUENCY (MHz)
39.375
52.500
0
8192
16384
24576
32768
40960
49152
57344
65536
OUTPUT CODE
Figure 13. 105 MSPS, 64k Point, Single-Tone FFT, 170.3 MHz
0 -10 -20 -30
Figure 16. 105 MSPS, DNL Error vs. Output Code, 10.3 MHz
4 3 2 1
105MSPS 70.3MHz @ -1.0dBFS SNR = 77.8dB ENOB = 12.6 BITS SFDR = 86dBc
AMPLITUDE (dBFS)
-40
-60 -70 -80 -90 -100 -110 -120
06006-014
INL (MSB)
-50
0 -1 -2 -3 -4
0
13.125
26.250 FREQUENCY (MHz)
39.375
52.500
0
8192
16384
24576
32768
40960
49152
57344
65536
OUTPUT CODE
Figure 14. 105 MSPS, 64k Point, Single-Tone FFT, 70.3 MHz
Figure 17. 105 MSPS, INL Error vs. Output Code, 10.3 MHz
Rev. 0 | Page 13 of 32
06006-017
-130
06006-016
-130
-0.6
06006-051
-130
-130
AD9460
0 -10 -20 -30 80MSPS 10.3MHz @ -1.0dBFS SNR = 78.4dB ENOB = 12.9 BITS SFDR = 91dBc 0 -10 -20 -30 80MSPS 225.3MHz @ -1.0dBFS SNR = 75.7dB ENOB = 12.6 BITS SFDR = 82dBc
AMPLITUDE (dBFS)
-50 -60 -70 -80 -90 -100 -110 -120
06006-018
AMPLITUDE (dBFS)
-40
-40 -50 -60 -70 -80 -90 -100 -110 -120
0
12.5
25.0 FREQUENCY (MHz)
37.5
0
10
20 FREQUENCY (MHz)
30
40
Figure 18. 80 MSPS, 64k Point Single-Tone FFT, 10.3 MHz
0 -10 -20 -30
Figure 21. 80 MSPS, 64k Point Single-Tone FFT, 225.3 MHz
0.6
80MSPS 170.3MHz @ -1.0dBFS SNR = 76.8dB ENOB = 12.5 BITS SFDR = 87dBc
0.4
AMPLITUDE (dBFS)
-40
0.2
-60 -70 -80 -90 -100 -110 -120
06006-019
DNL (MSB)
-50
0
-0.2
-0.4
0
12.5
25.0 FREQUENCY (MHz)
37.5
0
8192
16384
24576
32768
40960
49152
57344
65536
OUTPUT CODE
Figure 19. 80 MSPS, 64k Point, Single-Tone FFT, 170.3 MHz
0 -10 -20 -30
Figure 22. 80 MSPS, DNL Error vs. Output Code, 10.3 MHz
4 3 2 1
80MSPS 70.3MHz @ -1.0dBFS SNR = 77.8dB ENOB = 12.5 BITS SFDR = 86dBc
AMPLITUDE (dBFS)
-40
-60 -70 -80 -90 -100 -110 -120
06006-020
INL (MSB)
-50
0 -1 -2 -3 -4
0
12.5
25.0 FREQUENCY (MHz)
37.5
0
8192
16384
24576
32768
40960
49152
57344
65536
OUTPUT CODE
Figure 20. 80 MSPS, 64k Point, Single-Tone FFT, 70.3 MHz
Figure 23. 80 MSPS, INL Error vs. Output Code, 10.3 MHz
Rev. 0 | Page 14 of 32
06006-023
-130
06006-022
-130
-0.6
06006-052
-130
-130
AD9460
95 90 SFDR dBc 90 85 SFDR -40C SFDR +25C 85 80 SNR +25C 80 SNR -40C (dB) SNR dB
SFDR +85C
(dB)
75
75
SNR +85C
70
06006-024
0
50
100
150
200
3.1
3.3
3.5
3.7
3.9
4.1
ANALOG INPUT FREQUENCY (MHz)
ANALOG INPUT COMMON-MODE VOLTAGE (V)
Figure 24. 105 MSPS, SNR/SFDR vs. Analog Input Frequency, 3.4 V p-p
95 SFDR +85C 90 SFDR +25C 85 SFDR -40C
Figure 27. 105 MSPS, SNR/SFDR vs. Analog Input Common Mode
120
SFDR dBFS
100 SNR dBFS 80 (dB)
(dB)
60 SFDR dBc 40
80
SNR -40C
75
SNR +25C SNR +85C
06006-025
20 SNR dB 200 -80 -70 -60 -50 -40 -30 -20 -10 0
06006-029
70
0
50
100
150
0 -90
ANALOG INPUT FREQUENCY (MHz)
ANALOG INPUT AMPLITUDE (dB)
Figure 25. 105 MSPS, SNR/SFDR vs. Analog Input Frequency, 3.4 V p-p, CMOS Mode
120 SFDR dBFS 100 SNR dBFS
Figure 28. 105 MSPS, 170.3 MHz SNR/SFDR vs. Analog Input Level, CMOS Output Mode
95
SFDR +85C
SFDR +25C SFDR -40C
90
80
(dB)
85 60
(dB)
SNR +25C 80 SNR -40C
40
SFDR dBc 75 SNR dB
06006-026
20
SNR +85C
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
0
50
100
150
200
ANALOG INPUT AMPLITUDE (dB)
ANALOG INPUT FREQUENCY (MHz)
Figure 26. 105 MSPS, 170.3 MHz SNR/SFDR vs. Analog Input Level
Figure 29. 80 MSPS, SNR/SFDR vs. Analog Input Frequency, 3.4 V p-p, CMOS Mode
Rev. 0 | Page 15 of 32
06006-030
0 -100
70
06006-028
70
65 2.9
AD9460
120 SFDR dBFS 100 SNR dBFS 100 SNR dBFS 80 (dB) 80 (dB) 120 SFDR dBFS
60
60 SFDR dBc
40
SFDR dBc
40
20 SNR dB
06006-031
20 SNR dB -40 -30 -20 -10 0 -80 -70 -60 -50 -40 -30 -20 -10 0
06006-034
0 -100
-90
-80
-70
-60
-50
0 -90
ANALOG INPUT AMPLITUDE (dB)
ANALOG INPUT AMPLITUDE (dB)
Figure 30. 80 MSPS, 170.3 MHz SNR/SFDR vs. Analog Input Level
95 SFDR +25C 90 SFDR +85C
Figure 33. 80 MSPS, 170.3 MHz SNR/SFDR vs. Analog Input Level, CMOS Output Mode
0 -20 -40 80MSPS 139.63MHz @ -7dBFS 140.63MHz @ -7dBFS SFDR = 89dBFS
85
(dB)
SFDR -40C SNR +25C 80 SNR -40C
(dBFS)
-60 -80 -100
75
SNR +85C -120
06006-032
0
50
100
150
200
0
10
20 FREQUENCY (MHz)
30
40
ANALOG INPUT FREQUENCY (MHz)
Figure 31. 80 MSPS, SNR/SFDR vs. Analog Input Frequency, 3.4 V p-p
95 SFDR dBc 90
Figure 34. 80 MSPS, 64k Point Two-Tone FFT, 139.6 MHz, 140.6 MHz
0 -10 -20 -30
SFDR AND IMD3 (dB)
85 (dB)
-40 -50 -60 -70 -80 -90 SFDR dBFS WORST IMD3 dBc
SFDR dBc
80
SNR dB
75
-100
70
-110 -120
06006-033
3.1
3.3
3.5
3.7
3.9
4.1
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
ANALOG INPUT COMMON-MODE VOLTAGE (V)
ANALOG INPUT AMPLITUDE (dBFS)
Figure 32. 80 MSPS, SNR/SFDR vs. Analog Input Common Mode
Figure 35. 80 MSPS, 64k Point Two-Tone FFT, 139.6 MHz, 140.6 MHz
Rev. 0 | Page 16 of 32
06006-036
65 2.9
-130 -100
WORST IMD3 dBFS
06006-035
70
-140
AD9460
0 -20 -40 105MSPS 139.63MHz @ -7dBFS 140.63MHz @ -7dBFS SFDR = 90dBFS
6000
5000
4000
(dBFS)
-60 -80 -100 -120 -140
FREQUENCY
3000
2000
1000
N+0
N+1
N+2 N+3 N+4
N+5 N+6 N+7
N+8 N+9
N-9
N-8
N-7 N-6
N-5 N-4
N-3 N-2 N-1
N+10
FREQUENCY (MHz)
BIN
Figure 36. 105 MSPS, 64k Point Two-Tone FFT, 139.6 MHz, 140.6 MHz
Figure 38. 80 MSPS, Grounded Input Histogram
0 -10 -20 -30
SFDR AND IMD3 (dB)
6000
5000
-40 -50 -60 -70 -80 -90 WORST IMD3 dBc SFDR dBFS SFDR dBc
FREQUENCY
4000
3000
2000
-100 -110
1000
WORST IMD3 dBFS -90 -80 -70 -60 -50 -40 -30 -20 -10 0
06006-041
N-3 N-2 N-1 N+0 N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10
N-10 N-9 N-8 N-7 N-6 N-5 N-4
ANALOG INPUT AMPLITUDE (dBFS)
BIN
Figure 37. 105 MSPS, Two-Tone SFDR vs. Analog Input Level, 139.6 MHz, 140.6 MHz
Figure 39 105 MSPS, Grounded Input Histogram
Rev. 0 | Page 17 of 32
06006-045
-120 -100
0
06006-042
0
13.125
26.250
39.375
52.500
06006-040
0
AD9460
0.6 0.5 0.4
96 94 92 90
105MSPS
170.3MHz, 80MSPS
GAIN ERROR (%FS)
0.3 0.2
(dBc)
0.1 0 -0.1 -0.2 -0.3
88 86 84 170.3MHz, 105MSPS 82 80 1.8
80MSPS
06006-048
-20
0
20
40
60
80
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
TEMPERATURE (C)
ANALOG INPUT RANGE (V p-p)
Figure 40. Gain vs. Temperature
Figure 42. SFDR vs. Analog Input Range
90
79
78 170.3MHz, 80MSPS 77
85 80 SFDR dBc 80 (dB)
105 SFDR dBc
(dBFS)
76 170.3MHz, 105MSPS 75
105 SNR dB 75 80 SNR dB 70
74
06006-064
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
55
65
75
85
95
105
115
125
135
145
ANALOG INPUT RANGE (V p-p)
SAMPLE RATE (MSPS)
Figure 41. SNR vs. Analog Input Range
Figure 43. Single-Tone SNR/SFDR vs. Sample Rate, 170.3 MHz
Rev. 0 | Page 18 of 32
06006-053
73 1.8
65 45
06006-065
-0.4 -40
AD9460 TERMINOLOGY
Analog Bandwidth (Full Power Bandwidth) The analog input frequency at which the spectral power of the fundamental frequency (as determined by the FFT analysis) is reduced by 3 dB. Aperture Delay (tA) The delay between the 50% point of the rising edge of the clock and the instant at which the analog input is sampled. Aperture Uncertainty (Jitter, tJ) The sample-to-sample variation in aperture delay. Clock Pulse Width and Duty Cycle Pulse width high is the minimum amount of time that the clock pulse should be left in the Logic 1 state to achieve rated performance. Pulse width low is the minimum time the clock pulse should be left in the low state. At a given clock rate, these specifications define an acceptable clock duty cycle. Differential Nonlinearity (DNL, No Missing Codes) An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. Guaranteed no missing codes to 16-bit resolution indicates that all 65,536 codes must be present over all operating ranges. Integral Nonlinearity (INL) INL is the deviation of each individual code from a line drawn from negative full scale through positive full scale. The point used as negative full scale occurs 1/2 LSB before the first code transition. Positive full scale is defined as a level 11/2 LSB beyond the last code transition. The deviation is measured from the middle of each particular code to the true straight line. Signal-to-Noise and Distortion (SINAD) SINAD is the ratio of the rms input signal amplitude to the rms value of the sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. Signal-to-Noise Ratio (SNR) SNR is the ratio of the rms input signal amplitude to the rms value of the sum of all other spectral components below the Nyquist frequency, excluding the first six harmonics and dc. Spurious-Free Dynamic Range (SFDR) SFDR is the ratio of the rms signal amplitude to the rms value of the peak spurious spectral component. The peak spurious component may be a harmonic. SFDR can be reported in dBc (that is, degrades as signal level is lowered) or dBFS (always related back to converter full scale). Total Harmonic Distortion (THD) The ratio of the rms input signal amplitude to the rms value of the sum of the first six harmonic components. Two-Tone SFDR The ratio of the rms value of either input tone to the rms value of the peak spurious component. The peak spurious component may or may not be an IMD product. Effective Number of Bits (ENOB) The effective number of bits for a sine wave input at a given input frequency can be calculated directly from its measured SINAD using the following formula:
ENOB =
(SINAD - 1.76 )
6.02
Gain Error The first code transition should occur at an analog value of 1/2 LSB above negative full scale. The last transition should occur at an analog value of 11/2 LSB below the positive full scale. Gain error is the deviation of the actual difference between first and last code transitions and the ideal difference between first and last code transitions. Maximum Conversion Rate The clock rate at which parametric testing is performed. Minimum Conversion Rate The clock rate at which the SNR of the lowest analog signal frequency drops by no more than 3 dB below the guaranteed limit. Offset Error The major carry transition should occur for an analog value of 1/2 LSB below VIN+ = VIN-. Offset error is defined as the deviation of the actual transition from that point. Out-of-Range Recovery Time The time it takes for the ADC to reacquire the analog input after a transition from 10% above positive full scale to 10% above negative full scale, or from 10% below negative full scale to 10% below positive full scale. Output Propagation Delay (tPD) The delay between the clock rising edge and the time when all bits are within valid logic levels. Power-Supply Rejection Ratio The change in full scale from the value with the supply at the minimum limit to the value with the supply at the maximum limit. Temperature Drift The temperature drift for offset error and gain error specifies the maximum change from the initial (25C) value to the value at TMIN or TMAX.
Rev. 0 | Page 19 of 32
AD9460 THEORY OF OPERATION
The AD9460 architecture is optimized for high speed and ease of use. The analog inputs drive an integrated, high bandwidth track-and-hold circuit that samples the signal prior to quantization by the 16-bit pipeline ADC core. The device includes an on-board reference and input logic that accepts TTL, CMOS, or LVPECL levels. The digital output logic levels are user selectable as standard 3 V CMOS or LVDS (ANSI-644 compatible) via the OUTPUT MODE pin.
ranges <2 V p-p. However, reducing the range can improve SFDR performance in some applications. Likewise, increasing the range up to 3.4 V p-p can improve SNR. Users are cautioned that the differential nonlinearity of the ADC varies with the reference voltage. Configurations that use <2.0 V p-p can exhibit missing codes and, therefore, degraded noise and distortion performance.
VIN+ VIN- REFT ADC CORE 0.1F 0.1F REFB VREF 10F + 0.1F SELECT LOGIC SENSE 0.5V 0.1F +
ANALOG INPUT AND REFERENCE OVERVIEW
A stable and accurate 0.5 V band gap voltage reference is built into the AD9460. The input range can be adjusted by varying the reference voltage applied to the AD9460, using either the internal reference or an externally applied reference voltage. The input span of the ADC tracks reference voltage changes linearly.
10F
Internal Reference Connection
A comparator within the AD9460 detects the potential at the SENSE pin and configures the reference into three possible states, summarized in Table 9. If SENSE is grounded, the reference amplifier switch is connected to the internal resistor divider (see Figure 44), setting VREF to ~1.7 V. If a resistor divider is connected as shown in Figure 45, the switch again sets to the SENSE pin. This puts the reference amplifier in a noninverting mode with the VREF output defined as
AD9460
Figure 44. Internal Reference Configuration
R2 VREF = 0.5 V x 1 + R1 In all reference configurations, REFT and REFB drive the analog-to-digital conversion core and establish its input span. The input range of the ADC always equals twice the voltage at the reference pin for either an internal or an external reference.
VIN+ VIN- REFT ADC CORE 0.1F 0.1F REFB VREF + 10F 0.1F R2 SENSE SELECT LOGIC 0.1F +
10F
Internal Reference Trim
The internal reference voltage is trimmed during the production test; therefore, there is little advantage to the user supplying an external voltage reference to the AD9460. The gain trim is performed with the AD9460 input range set to 3.4 V p-p nominal (SENSE connected to AGND). Because of this trim, and the maximum ac performance provided by the 3.4 V p-p analog input range, there is little benefit to using analog input
R1
0.5V
Figure 45. Programmable Reference Configuration
Rev. 0 | Page 20 of 32
06006-055
AD9460
06006-054
AD9460
Table 9. Reference Configuration Summary
Selected Mode External Reference Programmable Reference Programmable Reference (Set for 2 V p-p) Internal Fixed Reference SENSE Voltage AVDD 0.2 V to VREF 0.2 V to VREF AGND to 0.2 V Resulting VREF (V) N/A
0.5 x 1 + R2 (See Figure 45) R1
Resulting Differential Span (V p-p) 2 x external reference 2 x VREF 2.0 3.4
R2 , R1 = R2 = 1 k 0.5 x 1 + R1
1.7
External Reference Operation
When the SENSE pin is tied to AVDD, the internal reference is disabled, allowing the use of an external reference. An internal reference buffer loads the external reference with an equivalent 7 k load. The internal buffer continues to generate the positive and negative full-scale references, REFT and REFB, for the ADC core. The input span is always twice the value of the reference voltage; therefore, the external reference must be limited to a maximum of 2.0 V. See Figure 40 for gain variation vs. temperature.
Analog Inputs
As with most new high speed, high dynamic range ADCs, the analog input to the AD9460 is differential. Differential inputs improve on-chip performance because signals are processed through attenuation and gain stages. Most of the improvement is a result of differential analog stages having high rejection of even-order harmonics. There are also benefits at the PCB level. First, differential inputs have high common-mode rejection of stray signals, such as ground and power noise. Second, they provide good rejection of common-mode signals, such as local oscillator feedthrough. The specified noise and distortion of the AD9460 cannot be realized with a single-ended analog input; therefore, such configurations are discouraged. Contact sales for recommendations of other 16-bit ADCs that support single-ended analog input configurations. With the 1.7 V reference, which is the nominal value (see the Internal Reference Trim section), the differential input range of the AD9460 analog input is nominally 3.4 V p-p or 1.7 V p-p on each input (VIN+ or VIN-).
The AD9460 analog input voltage range is offset from ground by 3.5 V. Each analog input connects through a 1 k resistor to the 3.5 V bias voltage and to the input of a differential buffer. The internal bias network on the input properly biases the buffer for maximum linearity and range (see the Equivalent Circuits section). Therefore, the analog source driving the AD9460 should be ac-coupled to the input pins. The recommended method for driving the analog input of the AD9460 is to use an RF transformer to convert single-ended signals to differential signals (see Figure 47).
ANALOG INPUT SIGNAL R T ADT1-1WT RS VIN+
RS 0.1F
AD9460
06006-057
VIN-
Figure 47. Transformer-Coupled Analog Input Circuit
Series resistors between the output of the transformer and the AD9460 analog inputs help isolate the analog input source from switching transients caused by the internal sample-and-hold circuit. The series resistors, along with the 1 k resisters connected to the internal 3.5 V bias, must be considered in impedance matching the transformer input. For example, if RT is set to 51 , RS is set to 33 , and there is a 1:1 impedance ratio transformer, then the input matches a 50 source with a fullscale drive of 16.0 dBm. The 50 impedance matching can also be incorporated on the secondary side of the transformer, as shown in the evaluation board schematic (see Figure 50).
CLOCK INPUT CONSIDERATIONS
Any high speed ADC is extremely sensitive to the quality of the sampling clock provided by the user. A track-and-hold circuit is essentially a mixer, and any noise, distortion, or timing jitter on the clock combines with the desired signal at the analog-todigital output. For that reason, considerable care was taken in the design of the clock inputs of the AD9460, and the user is advised to give careful thought to the clock source. Typical high speed ADCs use both clock edges to generate a variety of internal timing signals and, as a result, can be sensitive to the clock duty cycle. Commonly a 5% tolerance is required on the clock duty cycle to maintain dynamic performance characteristics. The AD9460 contains a clock duty cycle stabilizer (DCS) that retimes the nonsampling edge, providing an internal clock
VIN+
1.7V p-p
3.5V
VIN- DIGITAL OUT = ALL 1s DIGITAL OUT = ALL 0s
06006-056
Figure 46. Differential Analog Input Range for VREF = 1.7 V
Rev. 0 | Page 21 of 32
AD9460
signal with a nominal ~50% duty cycle. Noise and distortion performance are nearly flat for a 30% to 70% duty cycle with the DCS enabled. The DCS circuit locks to the rising edge of CLK+ and optimizes timing internally. This allows for a wide range of input duty cycles at the input without degrading performance. Jitter in the rising edge of the input is still of paramount concern and is not reduced by the internal stabilization circuit. The duty cycle control loop does not function for clock rates of less than 30 MHz nominally. The loop is associated with a time constant that should be considered in applications where the clock rate can change dynamically, requiring a wait time of 1.5 s to 5 s after a dynamic clock frequency increase or decrease before the DCS loop is relocked to the input signal. During the time that the loop is not locked, the DCS loop is bypassed, and the internal device timing is dependent on the duty cycle of the input clock signal. In such an application, it can be appropriate to disable the duty cycle stabilizer. In all other applications, enabling the DCS circuit is recommended to maximize ac performance. The DCS circuit is controlled by the DCS MODE pin; a CMOS logic low (AGND) on DCS MODE enables the duty cycle stabilizer, and logic high (AVDD1 = 3.3 V) disables the controller. The AD9460 input sample clock signal must be a high quality, extremely low phase noise source to prevent degradation of performance. Maintaining 16-bit accuracy places a premium on the encode clock phase noise. SNR performance can easily degrade by 3 dB to 4 dB with 70 MHz analog input signals when using a high jitter clock source. See the AN-501 Application Note, Aperture Uncertainty and ADC System Performance, for more information. For optimum performance, the AD9460 must be clocked differentially. The sample clock inputs are internally biased to ~1.5 V, and the input signal is usually ac-coupled into the CLK+ and CLK- pins via a transformer or capacitors. Figure 48 shows one preferred method for clocking the AD9460. The clock source (low jitter) is converted from single-ended to differential using an RF transformer. The back-to-back Schottky diodes across the secondary of the transformer limit clock excursions into the AD9460 to approximately 0.8 V p-p differential. This helps prevent the large voltage swings of the clock from feeding through to other portions of the AD9460 and limits the noise presented to the sample clock inputs.
CRYSTAL SINE SOURCE ADT1-1WT 0.1F CLK+
VT 0.1F ENCODE ECL/ PECL 0.1F
AD9460
ENCODE
06006-059
VT
Figure 49. Differential ECL for Encode
Jitter Considerations
High speed, high resolution ADCs are sensitive to the quality of the clock input. The degradation in SNR at a given input frequency (fINPUT) and rms amplitude due only to aperture jitter (tJ) can be calculated using the following equation: SNR = 20 log[2fINPUT x tJ] In the equation, the rms aperture jitter represents the root-meansquare of all jitter sources, including the clock input, analog input signal, and ADC aperture jitter specification. IF undersampling applications are particularly sensitive to jitter. The clock input should be treated as an analog signal in cases where aperture jitter can affect the dynamic range of the AD9460. Power supplies for clock drivers should be separated from the ADC output driver supplies to avoid modulating the clock signal with digital noise. Low jitter crystal-controlled oscillators make the best clock sources. If the clock is generated from another type of source (by gating, dividing, or another method), it should be synchronized by the original clock during the last step.
POWER CONSIDERATIONS
Care should be taken when selecting a power source. The use of linear dc supplies is highly recommended. Switching supplies tend to have radiated components that can be received by the AD9460. Each of the power supply pins should be decoupled as closely to the package as possible using 0.1 F chip capacitors. The AD9460 has separate digital and analog power supply pins. The analog supplies are denoted AVDD1 (3.3 V) and AVDD2 (5 V), and the digital supply pins are denoted DRVDD. Although the AVDD1 and DRVDD supplies can be tied together, best performance is achieved when the supplies are separate. This is because the fast digital output swings can couple switching current back into the analog supplies. Note that both AVDD1 and AVDD2 must be held within 5% of the specified voltage. The DRVDD supply of the AD9460 is a dedicated supply for the digital outputs in either LVDS or CMOS output modes. When in LVDS mode, the DRVDD should be set to 3.3 V. In CMOS mode, the DRVDD supply can be connected from 2.5 V to 3.6 V for compatibility with the receiving logic.
AD9460
HSMS2812 DIODES
06006-058
CLK-
Figure 48. Crystal Clock Oscillator, Differential Encode
If a low jitter clock is available, it helps to band-pass filter the clock reference before driving the ADC clock inputs. Another option is to ac couple a differential ECL/PECL signal to the encode input pins, as shown in Figure 49.
Rev. 0 | Page 22 of 32
AD9460
DIGITAL OUTPUTS
LVDS Mode
The off-chip drivers on the chip can be configured to provide LVDS-compatible output levels via Pin 3 (OUTPUT MODE). LVDS outputs are available when OUTPUT MODE is CMOS logic high (or AVDD1 for convenience) and a 3.74 k RSET resistor is placed at Pin 5 (LVDS_BIAS) to ground. Dynamic performance, including both SFDR and SNR, maximizes when using the AD9460 in LVDS mode; designers are encouraged to take advantage of this mode. The AD9460 outputs include complementary LVDS outputs for each data bit (Dx+/Dx-), the overrange output (OR+/OR-), and the output data clock output (DCO+/DCO-). The RSET resistor current is multiplied on-chip, setting the output current at each output equal to a nominal 3.5 mA (11 x IRSET). A 100 differential termination resistor placed at the LVDS receiver inputs results in a nominal 350 mV swing at the receiver. LVDS mode facilitates interfacing with LVDS receivers in custom ASICs and FPGAs that have LVDS capability for superior switching performance in noisy environments. Single point-to-point net topologies are recommended, with a 100 termination resistor located as close to the receiver as possible. It is recommended to keep the trace length less than two inches and to keep differential output trace lengths as equal as possible.
TIMING
The AD9460 provides latched data outputs with a pipeline delay of 13 clock cycles. Data outputs are available one propagation delay (tPD) after the rising edge of CLK+. Refer to Figure 2 and Figure 3 for detailed timing diagrams.
OPERATIONAL MODE SELECTION
Data Format Select
The data format select (DFS) pin of the AD9460 determines the coding format of the output data. This pin is 3.3 V CMOS compatible, with logic high (or AVDD1, 3.3 V) selecting twos complement and DFS logic low (AGND) selecting offset binary format. Table 10 summarizes the output coding.
Output Mode Select
The OUPUT MODE pin controls the logic compatibility, as well as the pinout of the digital outputs. This pin is a CMOScompatible input. With OUTPUT MODE = 0 (AGND), the AD9460 outputs are CMOS compatible, and the pin assignment for the device is as defined in Table 8. With OUTPUT MODE = 1 (AVDD1, 3.3 V), the AD9460 outputs are LVDS compatible, and the pin assignment for the device is as defined in Table 7.
Duty Cycle Stabilizer
The DCS circuit is controlled by the DCS MODE pin; a CMOS logic low (AGND) on DCS MODE enables the DCS, and logic high (AVDD1, 3.3 V) disables the controller.
CMOS Mode
In applications that can tolerate a slight degradation in dynamic performance, the AD9460 output drivers can be configured to interface with 2.5 V or 3.3 V logic families by matching DRVDD to the digital supply of the interfaced logic. CMOS outputs are available when OUTPUT MODE is CMOS logic low (or AGND for convenience). In this mode, the output data bits, Dx, are single-ended CMOS, as is the overrange output, OR+. The output clock serves as a differential CMOS signal, DCO+/DCO-. Lower supply voltages are recommended to avoid coupling switching transients back to the sensitive analog sections of the ADC. Minimize the capacitive load to the CMOS outputs and connect each output to a single gate through a series resistor (220 ) to minimize switching transients caused by the capacitive loading.
SFDR Enhancement
Under certain conditions, the SFDR performance of the AD9460 improves by adding some additional power to the core of the ADC. The SFDR control pin (Pin 100) is a CMOS-compatible control pin to optimize the configuration of the AD9460 analog front end. Connecting SFDR to AGND optimizes SFDR performance for applications with analog input frequencies <200 MHz for 80 MSPS and 105 MSPS speed grades. For applications with analog inputs >200 MHz, this pin should be connected to AVDD1 for optimum SFDR performance; power dissipation from AVDD2 increases by ~70 mW for the AD9460BSVZ-80 and ~20 mW for the AD9460BSVZ-105.
Table 10. Digital Output Coding
Code 65,536 32,768 32,767 0 VIN+ - VIN- Input Span = 3.4 V p-p (V) +1.700 0 -0.000052 -1.70 VIN+ - VIN- Input Span = 2 V p-p (V) +1.000 0 -0.000031 -1.00 Digital Output Offset Binary (D15...D0) 1111 1111 1111 1111 1000 0000 0000 0000 0111 1111 1111 1111 0000 0000 0000 0000 Digital Output Twos Complement (D15...D0) 0111 1111 1111 1111 0000 0000 0000 0000 1111 1111 1111 1111 1000 0000 0000 0000
Rev. 0 | Page 23 of 32
AD9460 EVALUATION BOARD
Evaluation boards are offered to configure the AD9460 in either CMOS mode or LVDS mode only. This design represents a recommended configuration for using the device over a wide range of sampling rates and analog input frequencies. These evaluation boards provide all the support circuitry required to operate the ADC in its various modes and configurations. Complete schematics are shown in Figure 50 through Figure 53. Gerber files are available from engineering applications demonstrating the proper routing and grounding techniques that should be applied at the system level. It is critical that signal sources with very low phase noise (<60 fsec rms jitter) are used to realize the ultimate performance of the converter. Proper filtering of the input signal to remove harmonics and lower the integrated noise at the input is also necessary to achieve the specified noise performance. The evaluation boards are shipped with a 115 V ac to 6 V dc power supply. The evaluation boards include low dropout regulators to generate the various dc supplies required by the AD9460 and its support circuitry. Separate power supplies are provided to isolate the DUT from the support circuitry. Each input configuration can be selected by proper connection of various jumpers (see Figure 50). The LVDS mode evaluation boards include an LVDS-toCMOS translator, making them compatible with the high speed ADC FIFO evaluation kit (HSC-ADC-EVALA-SC, www.analog.com/FIFO). The kit includes a high speed data capture board that provides a hardware solution for capturing up to 32 kB samples of high speed ADC output data in a FIFO memory chip (user upgradeable to 256 kB samples). Software is provided to enable the user to download the captured data to a PC via the USB port. This software also includes a behavioral model of the AD9460 and many other high speed ADCs. Behavioral modeling of the AD9460 using ADIsimADCTM software is also available at www.analog.com/ADIsimADC. The ADIsimADC software supports virtual ADC evaluation using ADI proprietary behavioral modeling technology. This allows rapid comparison between the AD9460 and other high speed ADCs with or without hardware evaluation boards. The user can choose to remove the translator and terminations to access the LVDS outputs directly.
Rev. 0 | Page 24 of 32
GND
DRGND
P22 P21 PTMICRO4 PTMICRO4
4 P4 3 P3 2 P2 1 P1 4 P4 3 P3 2 P2 1 P1 5V GND VCC GND
H2 MTHOLE6
H1 MTHOLE6
H3 MTHOLE6
H4 MTHOLE6
VCC
E19
E36
GND
E18
VCC
E4 GND
101
GND
E5
E1
EPAD
VCC R11 1k GND
E3
SFDR AGND AGND AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AVDD1 AGND OR_T OR_C DRVDD DRGND D15_T D15_C D14_T D14_C D13_T D13_C D12_T D12_C D11_T D11_C DRVDD
GND
E9
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76
VCC
E10
GND VCC VCC VCC VCC VCC VCC GND DOR_T/DOR_Y DOR_C DRVDD DRGND (MSB) D15_T/D15_Y D15_C/D14_Y D14_T/D13_Y D14_C/D12_Y D13_T/D11_Y D13_C/D10_Y D12_T/D9_Y D12_C/D8_Y
D11_T/D7_Y D11_C/D6_Y DRVDD
E6
E14 VCC
GND
E2
GND VCC E41 E24 GND C3 0.1F C40 0.1F C9 0.1F GND C51 10F
+
E26 E25 E27 C86 0.1F
GND
AVDD2 AVDD2 AVDD2 AVDD2
TINB
PRI
SEC
TOUTB
C8 0.1F
R35 33
DNP = DO NOT POPULATE
AD9460
06006-060
GND VCC VCC VCC GND DRGND DRVDD D0_C (LSB) D0_T
NC CT
3
4
5V
1 5
6 2
VCC VCC VCC 5V VCC 5V VCC GND ENC ENCB
GND TOUT GND
T5 ADT1-1WT GND
C91 0.1F
R6 25
OPTIONAL
E15
SEC
2
ETC1-1-13
4
5
R9 DNP
C13 DNP
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
ANALOG
TOUTB
PRI
3
1
AVDD2 AVDD2 AVDD1 AVDD1 AVDD1 AVDD2 AVDD1 AVDD2 AVDD1 AGND ENC ENCB AGND AVDD1 AVDD1 AVDD1 AGND DRGND DRVDD D0_C D0_T
Figure 50. Evaluation Board Schematic
Rev. 0 | Page 25 of 32
EXTREF GND GND C39 10F C98 DNP GND
5
R3 3.74k
R1 DNP
R2 GND DNP
U1 AD9460
GND TOUT CT GND GND T2 C12 0.1F C7 0.1F R4 25 R28 33
4
R5 DNP
T1 ETC1-1-13
J4 SMBMST SEC
GND
1
L1 10nH
2
3 C5 TINB PRI 0.1F
SCLK 1 2 3 4 5 6 VCC 7 8 9 GND 10 11 12 5V C2 13 5V 0.1F 14 5V 5V 15 16 5V 17 5V 18 VCC 19 VCC 20 VCC 21 GND 22 23 24 GND 25 5V DCS MODE DNC OUTPUT MODE DFS LVDSBIAS AVDD1 SENSE VREF AGND REFT REFB AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD2 AVDD1 AVDD1 AVDD1 AGND VIN+ VIN- AGND AVDD2
DRGND D10_T D10_C D9_T D9_C D8_T D8_C DCO DCOB D7_T D7_C DRVDD DRGND D6_T D6_C D5_T D5_C D4_T D4_C D3_T D3_C D2_T D2_C D1_T D1_C
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
DRVDD DRGND EXTREF XTALPWR
DRGND D10_T/D5_Y D10_C/D4_Y D9_T/D3_Y D9_C/D2_Y D8_T/D1_Y D8_C/D0_Y DR DRB D7_T D7_C DRVDD DRGND D6_T D6_C D5_T D5_C D4_T D4_C D3_T D3_C D2_T D2_C D1_T D1_C
AD9460
GND GND R7 DNP R39 0 ENC VXTAL E30 E20 XTALPWR + CR2 DNP CR1 GND 2 1 ENCB GND GND DRVDD VCC 5V L3 FERRITE 5VX L4 FERRITE VCCX GND L2 0 DRGND L5 FERRITE DRVDDX 7 VXTAL 14 VCC VEE 3 U2 ECLOSC OUT ~OUT 8 1 XTALINPUT C42 0.1F GND C44 10F DNP GND 3 1 2 C36 DNP NC
3 4 1 5 6 2
ENCODE
CR2 TO MAKE LAYOUT AND PARASITIC LOADING SYMMETRICAL E31 5V + C1 10F DNP C41 0.1F DNP VXTAL
OPTIONAL ENCODE CIRCUITS
J5 SMBMST T3 ADT1-1WT
J1 SMBMST R8 50 C26 0.1F PRI SEC
XTALINPUT
Figure 51. Evaluation Board Schematic, Encode, Optional Encode and Power Options
Rev. 0 | Page 26 of 32
ADP3338-5
U14 1 GND 5VX VCCX VIN 4 OUT 2 3 U7 5V GND GND 5VX VIN IN 4 OUT OUT1
POWER OPTIONS
ADP3338-3.3
3.3V GND OUT1 IN
P4
ADP3338-3.3
U3 1 2 3 GND VCCX VIN DRVDDX 4 OUT 3.3V GND OUT1 IN 1 2 3
PJ-002A
2
2
DRGND DRVDDX VIN
3
3
1
1
+ C33 10F + C89 10F GND GND + C34 10F
+ + C87 10F
C6 10F + C88 10F GND GND DRGND
+
C4 10F
GND
DRGND
DNP = DO NOT POPULATE
06006-061
AD9460
BYPASS CAPACITORS
VCC + GND C64 10F C43 0.1F C35 0.1F C32 0.1F C30 0.01F C28 0.1F C27 0.1F C90 0.1F C50 0.1F C60 0.1F C10 0.1F C61 DNP C75 DNP
VCC C11 0.1F GND C14 DNP C17 DNP C16 DNP C15 0.1F C31 DNP C38 0.1F C29 DNP C19 DNP
DRVDD + DRGND C65 10F C47 0.1F C23 0.1F C21 0.1F C20 0.1F
DRVDD C69 DNP DRGND C70 DNP C45 DNP C49 DNP
5V + GND C56 10F C85 0.1F C53 0.1F C52 0.1F C58 0.01F C37 DNP C48 0.1F C18 0.1F
EXTREF + GND C55 10F DNP
5V C72 DNP GND 5V C94 0.1F GND DNP = DO NOT POPULATE C95 0.1F C22 0.1F C59 0.1F C93 DNP C96 0.1F C97 0.1F C84 0.1F C46 0.1F
06006-062
C73 DNP
C108 DNP
C109 DNP
C110 DNP
Figure 52. Evaluation Board Schematic, Bypass Capacitors
Rev. 0 | Page 27 of 32
AD9460
U15 SN75LVDT390 DR DRB DRVDD R19 0 DRO DRVDD DRGND R10 0 ORO DRVDD 1 2 3 4 5 6 7 8 1A 1B 2A 2B 3A 3B 4A 4B U8 SN75LVDT386 RZ5 220 RSO16ISO 1 2 3 4 DRVDD 5 6 7 8 R6 R7 R8 R5 R4 13 12 11 10 9 220 RSO16ISO 1 2 DRVDD 3 4 5 6 7 8 R1 R2 R3 R4 R5 R6 R7 R8 RZ4 16 15 14 13 12 11 10 9 D7O D6O D5O D4O D3O D2O D1O D0O DRGND R3 14 R2 15 D15O D14O D13O D12O D11O D10O D9O D8O R1 16 EN_1_2 1Y 2Y VCC GND 3Y 4Y EN_3_4 16 15 14 13 12 11 10 9
DRO_T/DOR_Y DOR_C
DRGND DRGND DOR_C D15_C/D14_Y D14_C/D12_Y D13_C/D10_Y D12_C/D8_Y D11_C/D6_Y D10_C/D4_Y D9_C/D2_Y D8_C/DO_Y DRB D7_C D6_C D5_C D4_C D3_C D2_C D1_C D0_C DRGND
40
P40
P39 39
DRGND ORO
40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2
P40 P38 P36 P34 P32 P30 P28 P26 P24 P22 P20 P18 P16 P14 P12 P10 P8 P6 P4 P2
P39 39 P37 37 P35 35 P33 33 P31 31 P29 29 P27 27 P25 25 P23 23 P21 21 P19 19 P17 17 P15 15 P13 13 P11 11 P9 9 P7 7 P5 5 P3 3 P1 1 P7 C40MS
DRGND DRO GND D15O D14O D13O D12O D11O D10O D9O D8O D7O D6O D5O D4O D3O D2O D1O D0O DRGND
DOR_T/DOR_Y
38
P38
P37 37
D15_T/D15_Y
36
P36
P35 35
DRGND DRVDD DRVDD DRGND DRVDD
D14_T/D13_Y
34
P34
P33 33
D13_T/D11_Y
32
P32
P31 31
D12_T/D9_Y
30
P30
P29 29
D11_T/D7_Y
28
P28
P27 27
D10_T/D5_Y
26
P26
P25 25
D9_T/D3_Y
24
P24
P23 23
Figure 53. Evaluation Board Schematic
Rev. 0 | Page 28 of 32
DRGND DRVDD DRVDD DRGND P9 9 P7 7 P5 5 P3 3 P1 1 DRVDD DRGND DRVDD DRVDD DRGND GND C76 0.1F GND C82 0.1F C77 0.1F C78 0.1F
D8_T/D1_Y
22
P22
P21 21
DR
20
P20
P19 19
D7_T
18
P18
P17 17
D6_T
16
P16
P15 15
D5_T
14
P14
P13 13
D4_T
12
P12
P11 11
D3_T
10
P10
D2_T
8
P8
D1_T
6
P6
D0_T
4
P4
DRGND
2
D15_T/D14_Y D15_C/D14_Y D14_T/D13_Y D14_C/D12_Y D13_T/D11_Y D13_C/D10_Y D12_T/D9_Y D12_C/D8_Y D11_T/D7_Y D11_C/D6_Y D10_T/D5_Y D10_C/D4_Y D9_T/D3_Y D9_C/D2_Y D8_T/D1_Y D8_C/D0_Y D7_T D7_C D6_T D6_C D5_T D5_C D4_T D4_C D3_T D3_C D2_T D2_C D1_T D1_C D0_T D0_C A1A A1B A2A A2B A3A A3B A4A A4B B1A B1B B2A B2B B3A B3B B4A B4B C1A C1B C2A C2B C3A C3B C4A C4B D1A D1B D2A D2B D3A D3B D4A D4B GND VCC1 VCC2 GND1 ENA A1Y A2Y A3Y A4Y ENB B1Y B2Y B3Y B4Y GND2 VCC3 VCC4 GND3 C1Y C2Y C3Y C4Y ENC D1Y D2Y D3Y D4Y END GND4 VCC5 VCC6 GND5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
P2
P6 C40MS
06006-063
AD9460
Table 11. AD9460 Customer Evaluation Board Bill of Materials
Item 1 2 Qty. 7 45 Reference Designator C4, C6, C33, C34, C87, C88, C89 C2, C3, C5, C7, C8, C9, C10, C11, C12, C15, C18, C20, C21, C22, C23, C26, C27, C28, C32, C35, C38, C40, C42, C43, C46, C47, C48, C50, C52, C53, C59, C60, C76, C77, C78, C82, C84, C85, C86, C90, C91, C94, C95, C96, C97 C30, C58 C39, C56, C64, C65 C51 CR1 CR21 E1, E2, E3, E4, E5, E6, E9, E10, E14, E18, E19, E20, E24, E25, E26, E27, E30, E31, E36, E41 J1, J4 L1 L3, L4, L5 P4 P7 R3 R8 R10, R19, R39, L2 R11 R28, R35 RZ4, RZ5 T3 U1 U14 U3, U7 U8 U15 R4, R6 Description Capacitor Capacitor Package TAJD 402 Value 1 10 F 0.1 F Manufacturer Digi-Key Corporation Digi-Key Corporation Mfg. Part No. 478-1699-2 PCC2146CT-ND
3 4 5 6 7 8
2 4 1 1 1 20
Capacitor Capacitor Capacitor Diode Diode Header
201 TAJD 805 SOT23M5 SOT23M5 EHOLE
0.01 F 10 F 10 F
DNP
Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Mouser Electronics Digi-Key Corporation Coilcraft, Inc. Mouser Electronics Digi-Key Corporation Samtec, Inc. Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Digi-Key Corporation Mini-Circuits Analog Devices, Inc. Analog Devices, Inc. Analog Devices, Inc. Arrow Electronics, Inc. Arrow Electronics, Inc. Digi-Key Corporation
445-1796-1-ND 478-1699-2 490-1717-1-ND MA3X71600LCT-ND MA3X71600LCT-ND 517-6111TG
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
2 1 3 1 1 1 1 4 1 2 2 1 1 1 2 1 1 2
SMA Inductor EMIFIL(R) BLM31PG500SN1L Power jack Header Resistor Resistor Resistor BRES402 Resistor Resistor array Transformer AD9460BSVZ ADP3338-5 ADP3338-3.3 SN75LVDT386 SN75LVDT390 Resistor
SMA 0603A 1206MIL PJ-002A C40MS 402 402 402 402 402 16-pin ADT1-1WT SV-100-3 SOT-223HS SOT-223HS TSSOP64 SOIC16PW 402 25 10 nH
ARFX1231-ND 0603CS-10NXGBU 81-BLM31P500S CP-002A-ND TSW-120-08-L-D-RA P3.74KLCT-ND P49.9LCT-ND P0.0JCT-ND P1.0KLCT-ND P33JCT-ND 742C163220JCT-ND ADT1-1WT AD9460BSVZ ADP3338-5 ADP3338-3.3 SN75LVDT386 SN75LVDT390 P36JCT-ND
3.74 k 50 0 1 k 33 22
Rev. 0 | Page 29 of 32
AD9460
Item 27 28 Qty. 2 22 Reference Designator C1, C44, C551 C13, C14, C16, C17, C19, C29, C31, C36, C37, C41, C45, C49, C61, C69, C70, C72, C73, C75, C93, C108, C109, C1101 C981 E151 J51 P61 R1, R21 R5, R7, R91 U21 H1, H2, H3, H41 T1, T21 T51 P21, P221 Description Capacitor CAP402 Package TAJD 402 Value 1 10 F, DNP DNP Manufacturer Digi-Key Corporation Mfg. Part No. 478-1699-2
29 30 31 32 33 34 35 36 37 38 39
1
1
Capacitor Header SMA Header BRES402 BRES402 ECLOSC MTHOLE6 Balun transformer Transformer Term strip
805 EHOLE SMA C40MS 402 402 DIP4(14) MTHOLE6 SM-22 ADT1-1WT PTMICRO4
DNP DNP DNP DNP DNP DNP DNP DNP DNP DNP DNP
Digi-Key Corporation Mouser Electronics Digi-Key Corporation Samtec, Inc.
490-1717-1-ND 517-6111TG ARFX1231-ND TSW-120-08-L-D-RA
2 3 1 4 2 1 2
M/A-COM Mini-Circuits Newark Electronics
ETC1-1-13 ADT1-WT
DNP = do not populate. All items listed in this category are not populated.
Rev. 0 | Page 30 of 32
AD9460 OUTLINE DIMENSIONS
0.75 0.60 0.45 1.20 MAX
100 1 PIN 1
16.00 BSC SQ 14.00 BSC SQ
76 75 76 75 100 1
TOP VIEW
(PINS DOWN)
EXPOSED PAD
9.50 SQ
1.05 1.00 0.95
0 MIN
0.15 0.05
SEATING PLANE
0.20 0.09 7 3.5 0 0.08 MAX COPLANARITY
25 26
51 50
51 50
BOTTOM VIEW (PINS UP) 26
25
VIEW A
0.50 BSC LEAD PITCH
0.27 0.22 0.17
VIEW A
ROTATED 90 CCW
COMPLIANT TO JEDEC STANDARDS MS-026-AED-HD NOTES 1. CENTER FIGURES ARE TYPICAL UNLESS OTHERWISE NOTED. 2. THE PACKAGE HAS A CONDUCTIVE HEAT SLUG TO HELP DISSIPATE HEAT AND ENSURE RELIABLE OPERATION OF THE DEVICE OVER THE FULL INDUSTRIAL TEMPERATURE RANGE. THE SLUG IS EXPOSED ON THE BOTTOM OF THE PACKAGE AND ELECTRICALLY CONNECTED TO CHIP GROUND. IT IS RECOMMENDED THAT NO PCB SIGNAL TRACES OR VIAS BE LOCATED UNDER THE PACKAGE THAT COULD COME IN CONTACT WITH THE CONDUCTIVE SLUG. ATTACHING THE SLUG TO A GROUND PLANE WILL REDUCE THE JUNCTION TEMPERATURE OF THE DEVICE WHICH MAY BE BENEFICIAL IN HIGH TEMPERATURE ENVIRONMENTS.
Figure 54. 100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP] (SV-100-3) Dimensions shown in millimeters
ORDERING GUIDE
Model AD9460BSVZ-80 1 AD9460BSVZ-1051 AD9460-80LVDS/PCB AD9460-105LVDS/PCB
1
Temperature Range -40C to +85C -40C to +85C
Package Description 100-Lead TQFP_EP 100-Lead TQFP_EP AD9460-80LVDS Mode Evaluation Board AD9460-105LVDS Mode Evaluation Board
Package Option SV-100-3 SV-100-3
Z = Pb-free part.
Rev. 0 | Page 31 of 32
040506-A
AD9460 NOTES
(c)2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06006-0-7/06(0)
Rev. 0 | Page 32 of 32


▲Up To Search▲   

 
Price & Availability of AD9460BSVZ-80

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X